By Topic

Navigation and Control System of a Deep-sea Unmanned Underwater Vehicle 'HEMIRE'

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Pan-Mook Lee ; Maritime and Ocean Engineering Research Institute (MOERI), KORDI, Rep. of Korea ; Bong-Huan Jun ; Ji-Hong Li ; Hyun Taek Choi
more authors

This paper presents a hybrid underwater navigation and control system for positioning, guidance and control of a deep-sea unmanned underwater vehicle (UUV), HEMIRE. For precise navigation of the UUV, the hybrid navigation system is designed based on strap-down IMU (inertial measurement unit) accompanying with USBL (ultra-short base line), DVL (Doppler velocity log), range sonar, depth and heading sensors. Initial localization and position reference of the UUV are performed with the USBL when the vehicles are in stationary condition. This paper also presents the characteristics of the UUV and the system constitution of the surface control unit. HEMIRE is equipped with two hydraulic manipulators, ORION, which are remotely controlled at the surface vessel via fiber optic communication. An operator can control the manipulators with a workspace-controlled master arm as well as a parallel-type master arm. This paper describes the task-oriented control of the tele-operated robotic arms mounted on HEMIRE and its application to task-oriented joint configurations.

Published in:

OCEANS 2006 - Asia Pacific

Date of Conference:

16-19 May 2007