By Topic

Segmentation and Classification of Coral for Oceanographic Surveys: A Semi-Supervised Machine Learning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthew Johnson-Roberson ; ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney ; Suresh Kumar ; Stefan Willams

This work presents a technique for the autonomous segmentation and classification of coral through the combination of visual and acoustic data. Autonomous Underwater Vehicles (AUVs) facilitate the live capture of multi-modal sensor information about coral reefs. Environmental monitoring of these reefs can be aided though the autonomous extraction and identification of certain coral species of interest. The technique presented employs a two phase procedure of segmentation and classification to gather statistics about coral density during autonomous missions with an AUV.

Published in:

OCEANS 2006 - Asia Pacific

Date of Conference:

16-19 May 2007