By Topic

A General-Purpose 7 DOF Haptic Device: Applications Toward Robot-Assisted Surgery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gregory Tholey ; Conferno Solutions, King of Prussia ; Jaydev P. Desai

A 7 DOF haptic device has been designed and developed with applications towards robot-assisted minimally invasive surgery. The device consists of four degrees of force feedback (X, Y, Z, and grasping) capability and seven degrees of position feedback capability. It has a closed kinematic chain with two halves (user interface and spatial mechanism) that connect together via a universal joint. The user interface contains four degrees of position feedback, namely, the roll, pitch, yaw, and linear motion of the hand and forearm. In addition, a grasping mechanism with two thimbles mounted at the end of the user interface provides force feedback to the fingers of the user. The spatial mechanism provides force feedback to the user interface through a universal joint located at the grasping mechanism. This paper presents the design and development of this haptic device. In addition, a kinematic and workspace analysis of the device has been completed to compute the position of the slave robot and end-effector tool. Friction estimation has been presented to enable a higher transparency of the haptic device. Finally, a simulation of needle insertion into soft tissue was developed to test the device.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:12 ,  Issue: 6 )