Cart (Loading....) | Create Account
Close category search window
 

Non-Data-Aided Symbol Rate Estimation of Linearly Modulated Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The estimation of the symbol rate of a linearly modulated signal is addressed, with special focus on low signal-to-noise ratio (SNR) scenarios. This problem finds application in automatic modulation classification and signal monitoring. A maximum-likelihood (ML) approach is adopted to derive practical estimators, exploiting information on the cyclostationarity of the modulated signal as well as knowledge of the received signaling pulse shape. The structure of the ML estimator suggests a two-step estimation procedure, whereby an initial coarse search determines first a neighborhood from which a subsequent fine search yields the final symbol rate estimate. Links between the ML approach and previous results from the literature in symbol rate estimation are established as well. The proposed scheme is applicable even for small excess bandwidths, at the cost of a higher complexity with respect to simpler estimators known to fail under such conditions.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.