Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Real-time Breaking Waves for Shallow Water Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a new method for enhancing shallow water simulations by the effect of overturning waves. While full 3D fluid simulations can capture the process of wave breaking, this is beyond the capabilities of a pure height field model. 3D simulations, however, are still too expensive for real-time applications, especially when large bodies of water need to be simulated. The extension we propose overcomes this problem and makes it possible to simulate scenes such as waves near a beach, and surf riding characters in real-time. In a first step, steep wave fronts in the height field are detected and marked by line segments. These segments then spawn sheets of fluid represented by connected particles. When the sheets impinge on the water surface, they are absorbed and result in the creation of particles representing drops and foam. To enable interesting applications, we furthermore present a two-way coupling of rigid bodies with the fluid simulation. The capabilities and efficiency of the method will be demonstrated with several scenes, which run in real-time on today's commodity hardware.

Published in:

Computer Graphics and Applications, 2007. PG '07. 15th Pacific Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007