By Topic

Multilinear Motion Synthesis with Level-of-Detail Controls

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mukai, T. ; Toyohashi Univ. of Technol., Aichi ; Kuriyama, S.

Interactive animation systems often use a level-of-detail (LOD) control to reduce the computational cost by eliminating unperceivable details of the scene. Most methods employ a multiresolutional representation of animation and geometrical data, and adaptively change the accuracy level according to the importance of each character. Multilinear analysis provides the efficient representation of multidimensional and multimodal data, including human motion data, based on statistical data correlations. This paper proposes a LOD control method of motion synthesis with a multilinear model. Our method first extracts a small number of principal components of motion samples by analyzing three-mode correlations among joints, time, and samples using high-order singular value decomposition. A new motion is synthesized by interpolating the reduced components using geostatistics, where the prediction accuracy of the resulting motion is controlled by adaptively decreasing the data dimensionality. We introduce a hybrid algorithm to optimize the reduction size and computational time according to the distance from the camera while maintaining visual quality. Our method provides a practical tool for creating an interactive animation of many characters while ensuring accurate and flexible controls at a modest level of computational cost.

Published in:

Computer Graphics and Applications, 2007. PG '07. 15th Pacific Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007