By Topic

A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Petr Tichavsky ; Acad. of Sci. of the Czech Republic, Prague ; Zbyn¿k Koldovsky ; Arie Yeredor ; GermÁn Gomez-Herrero
more authors

Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient fastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed (i.i.d.) in time. Likewise, weights-adjusted second-order blind identification (WASOBI) is asymptotically optimal when all the sources are Gaussian and can be modeled as autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian i.i.d. sources, rendering WASOBI and EFICA severely suboptimal. In this paper, we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.

Published in:

IEEE Transactions on Neural Networks  (Volume:19 ,  Issue: 3 )