By Topic

NARX-Based Nonlinear System Identification Using Orthogonal Least Squares Basis Hunting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Chen ; Southampton Univ., Southampton ; X. X. Wang ; C. J. Harris

An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, which places the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method is adopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:16 ,  Issue: 1 )