Cart (Loading....) | Create Account
Close category search window
 

On Detection of Resistive Bridging Defects by Low-Temperature and Low-Voltage Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Engelke, P. ; Fac. of Appl. Sci, Albert-Ludwigs-Univ. of Freiburg, Freiburg ; Polian, I. ; Renovell, M. ; Kundu, S.
more authors

Test application at reduced power supply voltage (low-voltage testing) or reduced temperature (low-temperature testing) can improve the defect coverage of a test set, particularly of resistive short defects. Using a probabilistic model of two-line nonfeedback short defects, we quantify the coverage impact of low-voltage and low-temperature testing for different voltages and temperatures. Effects of statistical process variations are not considered in the model. When quantifying the coverage increase, we differentiate between defects missed by the test set at nominal conditions and undetectable defects (flaws) detected at non nominal conditions. In our analysis, the performance degradation of the device caused by lower power supply voltage is accounted for. Furthermore, we describe a situation in which defects detected by conventional testing are missed by low-voltage testing and quantify the resulting coverage loss. Experimental results suggest that test quality is improved even if no cost increase is allowed. If multiple test applications are acceptable, a combination of low voltage and low temperature turns out to provide the best coverage of both hard defects and flaws.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 2 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.