By Topic

Next-Generation Automated Vehicle Location Systems: Positioning at the Lane Level

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Du ; Continental AG, Deer Park ; Barth, M.J.

The majority of today's automated vehicle location (AVL) systems use Global Positioning System (GPS) technology, which can provide position information with an accuracy of approximately 15 m. Recently, low-cost Differential GPS (DGPS) receivers, which have a positioning accuracy of approximate 2-3 m, have become available. With this increased accuracy, it is now possible to perform AVL down to specific roadway lanes. In this paper, a vehicle-lane-determining system is described, consisting of an onboard DGPS receiver that is connected with a wireless communications channel, a unique lane-level digital roadway database, a developed lane-matching algorithm, and a real-time vehicle location display. Lane-level positioning opens up the door for a number of new intelligent transportation system applications such as better fleet management, lane-based traffic measurements from probe vehicles, and lane-level navigation. The developed low-cost system has been tested on a number of roadways and has performed very well when used with accurately surveyed map data. Based on more than 100 000 s, it has correctly determined the lane 97% of the time.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:9 ,  Issue: 1 )