By Topic

A Saturation Avoidance Technique for Peer-to-Peer Distributed Virtual Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Distributing a collection of virtual humans throughout a large urban environment, where limited semantic information is available, poses a problem when attempting to create a visually realistic real time environment. Randomly positioning agents within an urban environment will not cover the environment with virtual humans in a plausible way. For example, areas of the urban space that are more frequently used should have a higher population density both at the start and during the simulation. It is infeasible to manually identify areas in the urban environment which should be crowded or sparsely populated when considering a scalable method, suitable for large environments. Consequently, this paper combines and extends techniques from spatial analysis and virtual agent behaviour simulations to develop a system capable of automatically distributing pedestrians in an urban environment. In particular, it extends the point- based space syntax technique to enable the automatic analysis of a large urban environment in the presence of limited contextual information. This analysis specifies a set of population densities for areas in the environment and these values are used to initialise the locations of all the virtual humans in the environment. In addition to the initialisation stage the population densities in each area are consulted to ensure that the correct distribution of virtual humans is maintained throughout the simulation. The system is tested on an arbitrary section of a real city and comparisons of the characteristic parts of the test environment are correlated with the pedestrian movements.

Published in:

Cyberworlds, 2007. CW '07. International Conference on

Date of Conference:

24-26 Oct. 2007