Cart (Loading....) | Create Account
Close category search window
 

A Cluster Validity Measure With Outlier Detection for Support Vector Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Jeen-Shing ; Nat. Cheng Kung Univ., Tainan ; Jen-Chieh Chiang

This paper focuses on the development of an effective cluster validity measure with outlier detection and cluster merging algorithms for support vector clustering (SVC). Since SVC is a kernel-based clustering approach, the parameter of kernel functions and the soft-margin constants in Lagrangian functions play a crucial role in the clustering results. The major contribution of this paper is that our proposed validity measure and algorithms are capable of identifying ideal parameters for SVC to reveal a suitable cluster configuration for a given data set. A validity measure, which is based on a ratio of cluster compactness to separation with outlier detection and a cluster-merging mechanism, has been developed to automatically determine ideal parameters for the kernel functions and soft-margin constants as well. With these parameters, the SVC algorithm is capable of identifying the optimal number of clusters with compact and smooth arbitrary-shaped cluster contours for the given data set and increasing robustness to outliers and noise. Several simulations, including artificial and benchmark data sets, have been conducted to demonstrate the effectiveness of the proposed cluster validity measure for the SVC algorithm.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.