Cart (Loading....) | Create Account
Close category search window
 

Stratification Approach for 3-D Euclidean Reconstruction of Nonrigid Objects From Uncalibrated Image Sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guanghui Wang ; Windsor Univ., Windsor ; Wu, Q.M.J.

This paper addresses the problem of 3D reconstruction of nonrigid objects from uncalibrated image sequences. Under the assumption of affine camera and that the nonrigid object is composed of a rigid part and a deformation part, we propose a stratification approach to recover the structure of nonrigid objects by first reconstructing the structure in affine space and then upgrading it to the Euclidean space. The novelty and main features of the method lies in several aspects. First, we propose a deformation weight constraint to the problem and prove the invariability between the recovered structure and shape bases under this constraint. The constraint was not observed by previous studies. Second, we propose a constrained power factorization algorithm to recover the deformation structure in affine space. The algorithm overcomes some limitations of a previous singular-value-decomposition-based method. It can even work with missing data in the tracking matrix. Third, we propose to separate the rigid features from the deformation ones in 3D affine space, which makes the detection more accurate and robust. The stratification matrix is estimated from the rigid features, which may relax the influence of large tracking errors in the deformation part. Extensive experiments on synthetic data and real sequences validate the proposed method and show improvements over existing solutions.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.