Cart (Loading....) | Create Account
Close category search window
 

Adaptation, Coordination, and Distributed Resource Allocation in Interference-Limited Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gesbert, D. ; Eurecom Inst., Sophia Antipolis ; Kiani, S.G. ; Gjendemsjo, A. ; ien, G.E.

A sensible design of wireless networks involves striking a good balance between an aggressive reuse of the spectral resource throughout the network and managing the resulting co-channel interference. Traditionally, this problem has been tackled using a ldquodivide and conquerrdquo approach. The latter consists in deploying the network with a static or semidynamic pattern of resource reutilization. The chosen reuse factor, while sacrificing a substantial amount of efficiency, brings the interference to a tolerable level. The resource can then be managed in each cell so as to optimize the per cell capacity using an advanced air interface design. In this paper, we focus our attention on the overall network capacity as a measure of system performance. We consider the problem of resource allocation and adaptive transmission in multicell scenarios. As a key instance, the problem of joint scheduling and power control simultaneously in multiple transmit-receive links, which employ capacity-achieving adaptive codes, is studied. In principle, the solution of such an optimization hinges on tough issues such as the computational complexity and the requirement for heavy receiver-to-transmitter feedback and, for cellular networks, cell-to-cell channel state information (CSI) signaling. We give asymptotic properties pertaining to rate-maximizing power control and scheduling in multicell networks. We then present some promising leads for substantial complexity and signaling reduction via the use of newly developed distributed and game theoretic techniques.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.