Cart (Loading....) | Create Account
Close category search window
 

A Hybrid Data Mining Approach for Knowledge Extraction and Classification in Medical Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hassan, S.Z. ; Central Queensland Univ., Rockhampton ; Verma, B.

This paper presents a novel hybrid data mining approach for knowledge extraction and classification in medical databases. The approach combines self organizing map, k-means and naive Bayes with a neural network based classifier. The idea is to cluster all data in soft clusters using neural and statistical clustering and fuse them using serial and parallel fusion in conjunction with a neural classifier. The approach has been implemented and tested on a benchmark medical database. The preliminary experiments are very promising.

Published in:

Intelligent Systems Design and Applications, 2007. ISDA 2007. Seventh International Conference on

Date of Conference:

20-24 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.