By Topic

A primal-dual randomized algorithm for weighted paging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bansal, N. ; IBM T. J. Watson Res., Yorktown Heights ; Buchbinder, N. ; Naor, J.

In the weighted paging problem there is a weight (cost) for fetching each page into the cache. We design a randomized O(log k) -competitive online algorithm for the weighted paging problem, where k is the cache size. This is the first randomized o(k)-competitive algorithm and its competitiveness matches the known lower bound on the problem. More generally, we design an O(log(k/(k - h + I)))-competitive online algorithm for the version of the. problem where, the online algorithm has-cache size k and the online algorithm has cache size h les k. Weighted paging is a special case (weighted star metric) of the well known k-server problem for which it is a major open question whether randomization can be useful in obtaining sub-linear competitive algorithms. Therefore, abstracting and extending the insights from paging is a key step in the resolution of the k-server problem. Our solution for the weighted paging problem is based on a two-step approach. In the first step we obtain an O(log k)-competitive fractional algorithm which is based on a novel online primal-dual approach. In the second step we. obtain a randomized algorithm by rounding online the fractional solution to an actual distribution on integral cache, solutions. We conclude with a randomized O(log N)-competitive algorithm for the well studied Metrical Task System problem (MTS) on a metric defined by a weighted star on N leaves, improving upon a previous O(log2 N)-competitive algorithm of Blum et al. [9].

Published in:

Foundations of Computer Science, 2007. FOCS '07. 48th Annual IEEE Symposium on

Date of Conference:

21-23 Oct. 2007