Cart (Loading....) | Create Account
Close category search window

Incremental Feature Extraction from Gaussian Data using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghassabeh, Y.A. ; K. N. Toosi Univ. of Technol., Tehran ; Moghaddam, H.A.

In this paper, we present new self-organized networks to extract optimal features from multidimensional Gaussian data while preserving class separability. For this purpose, we introduce new adaptive algorithms for the computation of the square root of the inverse covariance matrix Sigma-1/2. Then we construct self-organized networks based on the proposed algorithms and use them for optimal feature extraction from Gaussian data. Convergence proof of the proposed algorithms and networks is given by introducing the related cost function and discussion about its properties. Adaptive nature of the new feature extraction method makes it appropriate for on-line pattern recognition applications. Experimental results using two-class multidimensional Gaussian data demonstrated the effectiveness of the new adaptive feature extraction method.

Published in:

Control Applications, 2007. CCA 2007. IEEE International Conference on

Date of Conference:

1-3 Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.