By Topic

Vegetation Mapping for Landmine Detection Using Long-Wave Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zare, A. ; Florida Univ., Gainesville ; Bolton, J. ; Gader, P. ; Schatten, M.

We develop a vegetation mapping method using long-wave hyperspectral imagery and apply it to landmine detection. The novel aspect of the method is that it makes use of emissivity skewness. The main purpose of vegetation detection for mine detection is to minimize false alarms. Vegetation, such as round bushes, may be mistaken as mines by mine detection algorithms, particularly in synthetic aperture radar (SAR) imagery. We employ an unsupervised vegetation detection algorithm that exploits statistics of emissivity spectra of vegetation in the long-wave infrared spectrum for identification. This information is incorporated into a Choquet integral-based fusion structure, which fuses detector outputs from hyperspectral imagery and SAR imagery. Vegetation mapping is shown to improve mine detection results over a variety of images and fusion models.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 1 )