Cart (Loading....) | Create Account
Close category search window
 

Parallel Detection Algorithm Using Multiple QR Decompositions With Permuted Channel Matrix for SDM/OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chang-Jun Ahn ; Fac. of Inf. Sci., Hiroshima City Univ., Hiroshima

Space division multiplexing (SDM)/orthogonal frequency division multiplexing (OFDM) systems transmit different data using the same frequency, so it is necessary to separate the simultaneously received signals in the receiver. Previous studies have shown that maximum likelihood detection (MLD) provides the best bit error rate (BER) performance. However, the complexity of MLD exponentially increases with the constellation size and the number of transmit antenna branches. Therefore, it is impractical to use a full MLD without reducing its computational complexity, because it would be prohibitively large for implementation. Recently, the use of QR decomposition with an M-algorithm (QRD-M) has been proposed to reduce the system complexity while maintaining the performance of the system. However, the QRD-M performance depends on the number of surviving symbol replica candidates. When QRD-M is used with a small number of surviving symbol replica candidates, the performance declines, but when there is a large number of surviving symbol replica candidates and the transmitter antenna branches, QRD-M requires a large memory to maintain their branch metrics, and a long latency time is also required. To reduce these problems, in this paper, we propose a parallel detection algorithm using multiple QR decompositions with permuted channel matrices for SDM/OFDM systems.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 4 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.