Cart (Loading....) | Create Account
Close category search window
 

Oxygen Consumption of Mammalian Embryos and Oocytes Monitored by Scanning Electrochemical Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Scanning electrochemical microscopy (SECM) has been used to noninvasively characterize oxygen consumption rate of single mammalian embryos and oocytes under physiological condition in culture medium at 37degC. Local oxygen concentration profile near the embryo sample was monitored by scanning with a Pt microelectrode probe, and then mass transfer rate for oxygen has been estimated based on spherical diffusion theory. A bovine embryo at two-cell stage was located in either a conventional culture dish or a cone-shaped microwell and compared the differences in concentration profile and diffusion behavior. We found that the cone-shaped microwell functions to amplify the oxygen concentration difference between the sample surface and the bulk. Further more, a measuring plate equipped with the cone-shaped six-microwells was developed to easily handle many embryos in a short time. The respiration activities significantly increased with the embryo development for both bovine and mouse.

Published in:

Sensors, 2007 IEEE

Date of Conference:

28-31 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.