By Topic

A Self-Learning Multi-Sensing Selection Process: Measuring Objects One by One

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alessandro Golfarelli ; ARCES-LYRAS LAB, University of Bologna, Campus of Forlì, Italy. ; Rossano Codeluppi ; Marco Tartagni

The paper presents a smart approach for a real time inspection and selection of granular objects in continuous flow. In the proposed approach, parallel channels are carved on a planar substrate to contain object flow. Each channel operates independently by processing and selecting grains one by one in real-time using multiple sensing units. A 3D conformational characterization of single objects is achieved by means of simultaneous cross-combined optical and impedimetric sensing technique. The sorting process is based on a 2 phase operative methodology defined by software control: 1) a self-learning step where the apparatus "learns" to identify objects by inputting a-priori selected classes of objects so that decision thresholds are adjusted accordingly; 2) an operative selection process where objects are detected, classified using a decisional algorithm and selected in real time by electromechanical actuators. As working example, cereal grain selection is presented.

Published in:

Sensors, 2007 IEEE

Date of Conference:

28-31 Oct. 2007