By Topic

A Cooperation Strategy Based on Nash Bargaining Solution in Cooperative Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhaoyang Zhang ; Inst. of Inf. & Commun. Eng., Zhejiang Univ., Hangzhou ; Jing Shi ; Hsiao-Hwa Chen ; Guizani, M.
more authors

This paper proposes a cooperation strategy among rational nodes in a wireless cooperative relaying network as an effort to solve two basic problems, i.e., when to cooperate and how to cooperate. First, a symmetric system model comprising two users and an access point (AP) is presented. In this model, each user plays an equal role and acts as a source as well as a potential relay and has the right to decide the amount of bandwidth it should contribute for cooperation. Second, referring to the cooperative game theory, the above problems are formulated as a two-person bargaining problem. Then, a cooperation bandwidth allocation strategy based on the Nash bargaining solution is proposed, in which if a derived condition is satisfied, users will cooperatively work, and each will share a certain fraction of its bandwidth for relaying; otherwise, they will independently work. Simulation results demonstrate that when cooperation takes place, users benefit from the proposed strategy in terms of utility, and those with longer distance to the AP should spend more bandwidth to cooperate with others.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 4 )