By Topic

Current and Charge Integral Equation Formulations and Picard's Extended Maxwell System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taskinen, M. ; Helsinki Univ. of Technol., Helsinki ; Vanska, S.

Important connection between computational and mathematical electromagnetics is presented. The newly developed well-conditioned electromagnetic frequency domain surface integral equation formulations, the current and charge integral equations, are shown to be related to Picard's extended Maxwell system, an extended partial differential equation system that has the correct static behavior. Electromagnetic surface integral representations are derived in this paper for traditional surface integral equation formulations and for the Picard system using the fundamental solution approach, i.e., from the definition of Dirac's delta function. The surface integral representations are constructed with proper solid angle coefficients starting from the scalar Helmholtz equation. The traditional surface integral equation formulations are shown to be derived from Maxwell's curl equations and are thus lacking the contribution of the divergence equations at zero frequency. It is shown that the new current and charge formulations can be derived from the surface integral representation of the Picard system.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 12 )