By Topic

Optimal Radiated Waveforms From an Arbitrary UWB Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pozar, David M. ; Univ. of Massachusetts, Amherst

Solutions are presented for the optimal electric field waveforms radiated by an arbitrary ultrawideband (UWB) antenna. Optimization criteria include maximization of the electric field amplitude at a particular time and location, or maximization of energy density over a specified time interval at a particular location. Assuming bandpass signals, constraints are placed on the total radiated energy, the Q of the antenna, and the size of the antenna. The solution is developed using a spherical mode expansion of the fields radiated by an arbitrary antenna enclosed by a spherical mathematical surface, and optimized using variational methods. A closed-form result is obtained for the case of amplitude maximization, while an integral equation must be solved numerically for the case of energy maximization in a time interval. An interesting result from these solutions is that the shapes of the optimal radiated field waveforms are largely independent of the size of the antenna. The solutions also indicate that the antenna characteristics that provide optimum field amplitude or energy in the transient case are identical to those associated with maximum gain in the CW case.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 12 )