Cart (Loading....) | Create Account
Close category search window
 

Reconstruction of Equivalent Currents Distribution Over Arbitrary Three-Dimensional Surfaces Based on Integral Equation Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alvarez, Y. ; Univ. de Oviedo, Gijon ; Las-Heras, F. ; Pino, M.R.

A technique for the determination of the equivalent currents distribution from a known radiated field is described. This Inverse Radiation Problem is solved through an Integral Equation algorithm that allows the characterization of antennas of complex geometry both for near field to far field (NF-FF) transformation purposes as well as for diagnostic tasks. The algorithm is based on the representation of the radiating structure by means of a set of equivalent currents over a three-dimensional (3D) surface that can be fitted to the arbitrary geometry of the antenna. The innovative formulation uses an integral equation involving the electric field due to the currents tangential components to the represented antenna 3D surface. For that purpose, both the magnetic and electric equivalent currents are considered in the integral equations. Regularization techniques are also introduced to improve the convergence of the proposed iterative solution. The paper concludes with several results related to the practical verification of the Equivalence Principle and the characterization of a horn antenna.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.