By Topic

Thermal-Safe Test Access Mechanism and Wrapper Co-optimization for System-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu, T.E. ; Nara Inst. of Sci. & Technol., Nara ; Yoneda, T. ; Chakrabarty, K. ; Fujiwara, H.

Smaller manufacturing processes have resulted in higher power densities which put greater emphasis on packaging and temperature control during test. For system-on-chips, peak power-based scheduling algorithms are used to optimize tests while satisfying power budgets. However, imposing power constraints does not necessarily mean that overheating is avoided due to the non-uniform power distribution across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Experiments show that even minimal increases in test time can yield considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

Published in:

Asian Test Symposium, 2007. ATS '07. 16th

Date of Conference:

8-11 Oct. 2007