By Topic

A New Fault-Information Model for Adaptive & Minimal Routing in 3-D Meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Jiang ; West Chester Univ., West Chester ; Jie Wu ; Dajin Wang

In this paper, we rewrite the minimal-connected-component (MCC) model in 2-D meshes in a fully-distributed manner without using global information so that not only can the existence of a Manhattan-distance-path be ensured at the source, but also such a path can be formed by routing-decisions made at intermediate nodes along the path. We propose the MCC model in 3-D meshes, and extend the corresponding routing in 2-D meshes to 3-D meshes. We consider the positions of source & destination when the new faulty components are constructed. Specifically, all faulty nodes will be contained in some disjoint fault-components, and a healthy node will be included in a faulty component only if using it in the routing will definitely cause a non-minimal routing-path. A distributed process is provided to collect & distribute MCC information to a limited number of nodes along so-called boundaries. Moreover, a sufficient & necessary condition is provided for the existence of a Manhattan-distance-path in the presence of our faulty components. As a result, only the routing having a Manhattan-distance-path will be activated at the source, and its success can be guaranteed by using the information of boundary in routing-decisions at the intermediate nodes. The results of our Monte-Carlo-estimate show substantial improvement of the new fault-information model in the percentage of successful Manhattan-routing conducted in 3-D meshes.

Published in:

Reliability, IEEE Transactions on  (Volume:57 ,  Issue: 1 )