By Topic

Finite-Difference Time-Domain Modeling of Periodic Guided-Wave Structures and Its Application to the Analysis of Substrate Integrated Nonradiative Dielectric Waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feng Xu ; Ecole Polytech. de Montreal, Montreal ; Ke Wu ; Wei Hong

The finite-difference time-domain (FDTD) method incorporating an equivalent resonant cavity model is presented for the modeling and analysis of guided-wave propagation characteristics of complex periodic structures. By transforming electromagnetic field variables into a new set of periodic variables, which can also be resolved from the Maxwell's equations, one can convert a periodic guided-wave problem into an equivalent resonator problem. Thus, the FDTD method used for a resonant cavity problem can be adopted to simulate periodic guided-wave structures. In addition, the proposed FDTD algorithm can be extended to model lossy periodic propagation problems. In this study, the substrate integrated nonradiative dielectric waveguide, which is a special type of periodic guided-wave structure subject to a potential leakage loss due to its periodic gaps, is investigated as a showcase. The proposed method is first validated and is then used to analyze the guided-wave characteristics of substrate integrated nonradiative dielectric waveguides. It is shown that the substrate integrated nonradiative dielectric waveguide structure, which can easily be fabricated in planar form, has a well-behaved propagation property suitable for high-performance millimeter-wave circuit design.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:55 ,  Issue: 12 )