By Topic

Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gurel, L. ; Bilkent Univ., Ankara ; Ergul, Ozgur

We present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy of the solutions is demonstrated on scattering problems involving spheres of various radii from 80lambda to 110lambda. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.

Published in:

Computational Electromagnetics Workshop, 2007

Date of Conference:

30-31 Aug. 2007