Cart (Loading....) | Create Account
Close category search window

Coupled Analysis of Quasi-static and Full-Wave Solution towards IC, Package and Board Co-design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jifeng Mao ; Optimal Corp., San Jose, CA ; Fitzgerald, G. ; An-Yu Kuo ; Wane, S.

In this paper, cascade-related approach and global one-single model methodology are investigated and compared in reference to real-world System-in-Package (SiP) product, which is designed using Cadence-SiP, and analyzed using Optimal SiP-enabled tool suite. A complete multi-level path, which consists of three portions-integrated circuit (IC), package and printed-circuit-board (PCB) -is selected as a test vehicle to investigate the limit of cascade-based approach. The results from quasi-static and full-wave simulation are compared, and the advantage of full-wave as well as limitation of quasi-static model are discussed. An innovative concept, referenced as "residual S-parameter", is proposed to characterize the coupling at the interface of IC, package and PCB, which plays an important role in the cascading of individual modules. Impact of the proposed concept on power integrity (PI) and signal integrity (SI) analysis is emphasized. Comparisons between full-wave, quasi-static and measurement results for representative component elements (interconnect, coupled bond wires) are discussed.

Published in:

Electrical Performance of Electronic Packaging, 2007 IEEE

Date of Conference:

29-31 Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.