By Topic

Decoherence-Insensitive Quantum Communication by Optimal C^{\ast } -Encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bodmann, B.G. ; Dept. of Appl. Math., Univ. of Waterloo, Waterloo, ON ; Kribs, D.W. ; Paulsen, V.I.

The central issue in this paper is to transmit a quantum state in such a way that after some decoherence occurs, most of the information can be restored by a suitable decoding operation. For this purpose, we incorporate redundancy by mapping a given initial quantum state to a messenger state on a larger dimensional Hilbert space via a C* -algebra embedding. Our noise model for the transmission is a phase damping channel which admits a noiseless subsystem or decoherence-free subspace. More precisely, the transmission channel is obtained from convex combinations of a set of lowest rank yes/no measurements that leave a component of the messenger state unchanged. The objective of our encoding is to distribute quantum information optimally across the noise-susceptible component of the transmission when the noiseless component is not large enough to contain all the quantum information to be transmitted. We derive simple geometric conditions for optimal encoding and construct examples of such encodings.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 12 )