Cart (Loading....) | Create Account
Close category search window
 

Type-2 Fuzzy Markov Random Fields and Their Application to Handwritten Chinese Character Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Zeng ; Sch. of Creative Media, City Univ. of Hong Kong, Hong Kong ; Zhi-Qiang Liu

In this paper, we integrate type-2 (T2) fuzzy sets with Markov random fields (MRFs) referred to as T2 FMRFs, which may handle both fuzziness and randomness in the structural pattern representation. On the one hand, the T2 membership function (MF) has a 3-D structure in which the primary MF describes randomness and the secondary MF evaluates the fuzziness of the primary MF. On the other hand, MRFs can represent patterns statistical-structurally in terms of neighborhood system and clique potentials and, thus, have been widely applied to image analysis and computer vision. In the proposed T2 FMRFs, we define the same neighborhood system as that in classical MRFs. To describe uncertain structural information in patterns, we derive the fuzzy likelihood clique potentials from T2 fuzzy Gaussian mixture models. The fuzzy prior clique potentials are penalties for the mismatched structures based on prior knowledge. Because Chinese characters have hierarchical structures, we use T2 FMRFs to model character structures in the handwritten Chinese character recognition system. The overall recognition rate is 99.07%, which confirms the effectiveness of the proposed method.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.