Cart (Loading....) | Create Account
Close category search window
 

Image Restoration Using Space-Variant Gaussian Scale Mixtures in Overcomplete Pyramids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guerrero-Colon, J.A. ; Univ. de Granada, Granada ; Mancera, L. ; Portilla, J.

In recent years, Bayes least squares-Gaussian scale mixtures (BLS-GSM) has emerged as one of the most powerful methods for image restoration. Its strength relies on providing a simple and, yet, very effective local statistical description of oriented pyramid coefficient neighborhoods via a GSM vector. This can be viewed as a fine adaptation of the model to the signal variance at each scale, orientation, and spatial location. Here, we present an enhancement of the model by introducing a coarser adaptation level, where a larger neighborhood is used to estimate the local signal covariance within every subband. We formulate our model as a BLS estimator using space-variant GSM. The model can be also applied to image deconvolution, by first performing a global blur compensation, and then doing local adaptive denoising. We demonstrate through simulations that the proposed method, besides being model-based and noniterative, it is also robust and efficient. Its performance, measured visually and in L2-norm terms, is significantly higher than the original BLS-GSM method, both for denoising and deconvolution.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.