By Topic

Marching-on-in-Degree Based Time-Domain Magnetic Field Integral Equation Method for Bodies of Revolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenming Yu ; Nanjing Univ. of Sci. & Technol., Nanjing ; Dagang Fang ; Chen Zhou

A marching-on-in-degree (MOD) based time-domain magnetic field integral equation method for bodies of revolution (BOR) is proposed and applied to obtain the induced currents on perfectly electric conducting BOR. Before this work, the time-domain integral equation method for BOR based on a marching-on-in-time procedure cannot really reduce the computational cost, since the number of unknowns cannot really be reduced. But it is the unknown reduction that serves as the key point of cost saving in BOR-problems. The method implemented in this letter can really utilize the symmetric property of BOR by applying two sets of entire domain basis functions. One is a set of scaled Laguerre polynomials inherited from common MOD method and used as temporal basis functions. The other is a Fourier series which comes from frequency domain method for solving BOR-problems. The validity, efficiency, and stability of the method are verified by several numerical examples.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:17 ,  Issue: 12 )