By Topic

An Automatic Software Test-Data Generation Scheme Based on Data Flow Criteria and Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andreou, A.S. ; Univ. of Cyprus, Nicosia ; Economides, K.A. ; Sofokleous, A.A.

Software test-data generation research primarily focuses on using control flow graphs for producing an optimum set of test cases. This paper proposes the integration of a data flow graph module with an existing testing framework and the utilisation of a specially designed genetic algorithm for automatically generating test cases based on data flow coverage criteria. The enhanced framework aims to explore promising aspects of software testing that have not yet received adequate research attention, by exploiting the data information of a program and provide a different testing coverage approach compared to existing control flow-oriented ones. The performance of the proposed approach is assessed and validated on a number of sample programs of different levels of size and complexity. The associated experimental results indicate successful performance in terms of testing coverage, which is significantly better when compared to those of existing dynamic data flow-oriented test data generation methods.

Published in:

Computer and Information Technology, 2007. CIT 2007. 7th IEEE International Conference on

Date of Conference:

16-19 Oct. 2007