Cart (Loading....) | Create Account
Close category search window
 

Notice of Violation of IEEE Publication Principles
Nuclear Localization of HIV-1 Tat Functionalized Gold Nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Notice of Violation of IEEE Publication Principles

"Nuclear Localization of HIV-1 Tat Functionalized Gold Nanoparticles"
C.C. Berry, J.M. de la Fuente, M. Mullin, S.W.L. Chu, and A.S.G. Curtis,
in the IEEE Transactions on NanoBioscience, Vol. 6, Issue 4, 2007

After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE's Publication Principles. The paper contains an unreferenced figure from the paper cited below. Figure 3a and 3b from the original paper were reused as Figure 7c and 7d without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.

"Tat Peptide as an Efficient Molecule To Translocate Gold Nanoparticles into the Cell Nucleus"
by Jesus M. de la Fuente and Catherine C. Berry,
in Bioconjugate Chemistry, 2005, 16 (5), ACS, pp 1176-1180

This appears as reference 22 in the paper presented here.

The panel has found for the authors' assertion that the figure was accidentally substituted during the publication process, and that the correct version of Figure 7 had been used in the refereeing process. The panel also found that whilst the reproduction represented a copyright infringement, it was of insufficient impact in the present work (particularly in light of the contained reference) to constitute a deliberate act of plagiarism.

The original version of Figure 7 is reproduced below.

The impermeable nature of the cell plasma membrane limits the therapeutic uses of many macromolecules and there is therefore a growing effort to circumvent this problem by designing strategies for targeted intracellular delivery. During the last decade several cell penetrating peptides, such as the HIV-1 tat peptide, have been shown to traverse the cell membrane, where integral protein transduction domains (PTDs) are responsible for their cellular up- ake, and to reach the nucleus while retaining biological activity. It has since been discovered that PTDs can enable the cellular delivery of conjugated biomolecules and even nanoparticles, but nuclear delivery has remained problematic. This present study focuses on the development of water soluble, biocompatible gold nanoparticles of differing size functionalized with the HIV-1 tat PTD with the aim of producing nuclear targeting agents. The particles were subsequently tested in vitro with a human fibroblast cell line, with results demonstrating successful nanoparticle transfer across the plasma membrane, with 5 nm particles achieving nuclear entry while larger 30 nm particles are retained in the cytoplasm, suggesting entry is blocked via nuclear pores dimensions.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.