Cart (Loading....) | Create Account
Close category search window

From Quantum to Classical Effects in Interactions Between Electrons and Very Intense Laser Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Popa, A. ; Nat. Inst. for Laser, Plasma & Radiat. Phys., Bucharest

We prove that the Schrodinger equation, written for a closed system composed of an electron and electromagnetic field, has a solution at the classical limit if the dipole approximation is fulfilled and the magnetic potential vector enters in classical form in the Schrodinger equation. Though the above property is valid generally in the case of laser beams, its potential importance is increased for the domain of the very high intensities of the electrical field, where it is in agreement with a lot of recent classical models and experimental results from literature. This result leads to a simplified computational model for the interaction between electrons and laser beams.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.