By Topic

Using the Conceptual Cohesion of Classes for Fault Prediction in Object-Oriented Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marcus, A. ; Wayne State Univ., Detroit ; Poshyvanyk, D. ; Ferenc, R.

High cohesion is a desirable property of software as it positively impacts understanding, reuse, and maintenance. Currently proposed measures for cohesion in Object-Oriented (OO) software reflect particular interpretations of cohesion and capture different aspects of it. Existing approaches are largely based on using the structural information from the source code, such as attribute references, in methods to measure cohesion. This paper proposes a new measure for the cohesion of classes in OO software systems based on the analysis of the unstructured information embedded in the source code, such as comments and identifiers. The measure, named the Conceptual Cohesion of Classes (C3), is inspired by the mechanisms used to measure textual coherence in cognitive psychology and computational linguistics. This paper presents the principles and the technology that stand behind the C3 measure. A large case study on three open source software systems is presented which compares the new measure with an extensive set of existing metrics and uses them to construct models that predict software faults. The case study shows that the novel measure captures different aspects of class cohesion compared to any of the existing cohesion measures. In addition, combining C3 with existing structural cohesion metrics proves to be a better predictor of faulty classes when compared to different combinations of structural cohesion metrics.

Published in:

Software Engineering, IEEE Transactions on  (Volume:34 ,  Issue: 2 )