By Topic

An Efficient Clustering Scheme to Exploit Hierarchical Data in Network Traffic Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahmood, A.N. ; Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Melbourne, VIC ; Leckie, C. ; Udaya, P.

There is significant interest in the data mining and network management communities about the need to improve existing techniques for clustering multivariate network traffic flow records so that we can quickly infer underlying traffic patterns. In this paper, we investigate the use of clustering techniques to identify interesting traffic patterns from network traffic data in an efficient manner. We develop a framework to deal with mixed type attributes including numerical, categorical, and hierarchical attributes for a one-pass hierarchical clustering algorithm. We demonstrate the improved accuracy and efficiency of our approach in comparison to previous work on clustering network traffic.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 6 )