By Topic

Localization In Wireless Sensor Networks Based on Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tran, D.A. ; Dept. of Comput. Sci., Univ. of Massachusetts, Boston, MA ; Thinh Nguyen

We consider the problem of estimating the geographic locations of nodes in a wireless sensor network where most sensors are without an effective self-positioning functionality. We propose LSVM-a novel solution with the following merits. First, LSVM localizes the network based on mere connectivity information (that is, hop counts only) and therefore is simple and does not require specialized ranging hardware or assisting mobile devices as in most existing techniques. Second, LSVM is based on Support Vector Machine (SVM) learning. Although SVM is a classification method, we show its applicability to the localization problem and prove that the localization error can be upper bounded by any small threshold given an appropriate training data size. Third, LSVM addresses the border and coverage-hole problems effectively. Last but not least, LSVM offers fast localization in a distributed manner with efficient use of processing and communication resources. We also propose a modified version of mass-spring optimization to further improve the location estimation in LSVM. The promising performance of LSVM is exhibited by our simulation study.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 7 )