By Topic

Power-Aware Design of Nanometer MCML Tapered Buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alioto, M. ; Univ. di Siena, Siena ; Palumbo, G.

A strategy to design MOS current-mode logic (MCML) tapered buffers is discussed. Closed-form expressions of the speed and the power consumption of MCML tapered buffers are first derived. Then, analytical criteria are presented to explore the power-delay design space and properly size the number of stages and the current tapering factor under a speed/power constraint. These criteria incorporate deep-submicron effects and are simple enough to be used in pencil-and-paper calculations. Being general and independent of the process adopted, the proposed design strategy allows for gaining an insight into the interdependence of design parameters, technology parameters and performance. Moreover, the proposed models of the delay/power consumption under assigned constraints allow the designer to predict the achievable performance before actually carrying out the design. Results are validated by means of Spectre simulations on a 90-nm CMOS technology.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 1 )