Cart (Loading....) | Create Account
Close category search window
 

Flex Cracking of Multilayer Ceramic Capacitors Assembled With Pb-Free and Tin–Lead Solders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keimasi, M. ; Dell Inc., Round Rock ; Azarian, M.H. ; Pecht, M.G.

In this paper, an experimental study was conducted to study susceptibility to flex cracking of multilayer ceramic capacitors (MLCCs), in which a comparison was made between identical samples which were assembled using either Pb-free (Sn3.0Ag0.5Cu) or eutectic tin-lead (Sn37Pb) solder. Flex testing was performed on MLCCs with different sizes (1812 and 0805) and on different dielectric materials (C0G and X7R) obtained from three different manufacturers. Experimental results showed that MLCCs mounted on printed circuit boards (PCBs) with Pb-free solder crack less with board flexing than those mounted on boards with eutectic tin-lead solder. For 1812-size MLCCs assembled with tin-lead solder, the PCB strain at 10% failure ranged between 1700 and 2000 microstrains. The PCB strain at 10% failure for 1812-size MLCCs assembled with Pb-free solder varied between 2300 and 9600 microstrains, depending on the MLCC manufacturer. C0G MLCCs are more resistant to flex cracking than X7R MLCCs. Out of 96 samples tested, none of the C0G MLCCs showed evidence of flex cracking up to the maximum strain level on board of about 137 000 microstrains. In contrast, in the case of X7R MLCCs, from the same manufacturer, assembled with tin-lead solder, 94 out of 96 capacitors failed.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:8 ,  Issue: 1 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.