By Topic

Automated Diagnosis for UMTS Networks Using Bayesian Network Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Khanafer, R.M. ; France Telecom R&D, Issy-les-Moulineaux ; Solana, B. ; Triola, J. ; Barco, R.
more authors

This paper presents an automated diagnosis in troubleshooting (TS) for Universal Mobile Telecommunications System (UMTS) networks using a Bayesian network (BN) approach. An automated diagnosis model is first described using the Naive Bayesian Classifier. To increase the performance of the diagnosis model, the entropy minimization discretization (EMD) method is incorporated into the model to select optimal segments for the discretization of the input symptoms. In the first phase, the diagnosis model is constructed using a dynamic simulator. The simulator TS platform allows generation of a large amount of data required to study the relations between faults and symptoms. In the second phase, the diagnosis model is adapted to a real UMTS network using counters and key performance indicators (KPIs) recovered from an Operations and Maintenance Center (OMC). Results for the automated diagnosis using both network simulator and real UMTS network measurements illustrate the efficiency of the proposed TS approach and its importance to mobile network operators.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 4 )