By Topic

Architectural Breakdown of End-to-End Latency in a TCP/IP Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Larsen, S. ; Intel Corp., Santa Clara ; Sarangam, P. ; Huggahalli, R.

Adoption of the 10 GbE Ethernet standard has been impeded by two important performance-oriented considerations: 1) processing requirements of common protocol stacks and 2) end-to-end latency. The overheads of typical software based protocol stacks on CPU utilization and throughput have been well evaluated in several studies. In this paper, we focus on end-to-end latency and present a detailed characterization across typical server system hardware and software stack components. We demonstrate that application level end-to-end latency with a 10 GbE connection can be as low as 10 microseconds for a single isolated request. The paper analyzes the components of the latency and discusses possible significant variations to the components under realistic conditions. We note that methods that are used to optimize throughput can often be responsible for the perception that Ethernet based latencies can be very high. Methods to pursue reducing the minimum latency and controlling the variations are presented.

Published in:

Computer Architecture and High Performance Computing, 2007. SBAC-PAD 2007. 19th International Symposium on

Date of Conference:

24-27 Oct. 2007