Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Feature Extraction for Face Recognition using Recursive Bayesian Linear Discriminant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, D. ; Nat. Univ. of Singapore, Singapore ; Xiang, C. ; Ge, S.S.

In this paper, we present two linear discriminant analysis algorithms (LDA), namely, recursive Bayesian linear discriminant I (or RBLD-I) and recursive Bayesian linear discriminant II (or RBLD-II), for the problem of face recognition. The favorable contribution of these two LDA algorithms is that they extract discriminative features with criterion functions directly based on minimum probability of classification error, or the Bayes error. The effectiveness of the two RBLD's are tested by application to two types of face recognition tasks: identity recognition and facial expression recognition. Experimental results show that the two RBLD's achieve superior classification performance over their fellow algorithm, recursive fisher linear discriminant (or RFLD), on Yale, ORL and Jaffe face databases.

Published in:

Image and Signal Processing and Analysis, 2007. ISPA 2007. 5th International Symposium on

Date of Conference:

27-29 Sept. 2007