By Topic

Expectation Maximization Based GPS/INS Integration for Land-Vehicle Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongliang Huang ; Calgary Univ., Calgary ; Leung, H. ; El-Sheimy, N.

Integration of global positioning system (GPS) and inertial navigation system (INS) provides continuous positioning information of high accuracy due to the synergistic effect of both systems. While a Kalman filter is usually employed to fuse the GPS and INS measurements, this approach requires a priori knowledge on the stochastic and deterministic parameters of both systems. In practice, these unknown parameters are often determined by trial and error. We propose an expectation-maximization (EM) method here to estimate these unknowns in a maximum likelihood (ML) framework. In particular, we employ a delta operator model to approximate the continuous-time system instead of the conventional shift operator model. The proposed method achieves simultaneous positioning and unknown parameter estimation. To assess the performance of the proposed method, we derive the posterior Cramer-Rao bound (PCRB) of our model and compare the performance with adaptive Kalman filtering technique. Both real and simulated data arc used to validate the effectiveness of the proposed EM-based method.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:43 ,  Issue: 3 )