By Topic

HRR Detector for Slow-Moving Targets in Sea Clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blunt, S.D. ; Univ. of Kansas, Lawrence ; Gerlach, K. ; Heyer, J.

The radar detection of targets in the presence of sea clutter has historically relied upon the radial velocity of targets with respect to the radar platform either by exploiting the relative target Dopplers (for targets with sufficient radial velocity) or by discerning the paths targets traverse from scan to scan. For targets with little to no radial velocity component, though, it can become quite difficult to differentiate targets from the surrounding sea clutter. This paper addresses the detection of slow-moving targets in sea clutter using a high resolution radar (HRR) such that the target has perceptible extent in range. Under the assumption of completely random sea clutter spikes based on an epsiv-contaminated mixture model with the signal and clutter powers known, optimal detection performance results from using the likelihood ratio test (LRT). However, for realistic sea clutter, the clutter spikes tend to be a localized phenomenon. Based upon observations from real radar data measurements, a heuristic approach exploiting a salient aspect of the idealized LRT is developed which is shown to perform well when applied to real measured sea clutter.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:43 ,  Issue: 3 )