By Topic

An Introduction to Adaptive QAM Modulation Schemes for Known and Predicted Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Svensson, A. ; Chalmers Univ. of Technol., Goteborg

A major disadvantage with fixed modulation (nonadaptive) on channels with varying signal-to-noise ratio (SNR) is that the bit-error-rate (BER) probability performance is changing with the channel quality. Most applications require a certain maximum BER and there is normally no reason for providing a smaller BER than required. An adaptive modulation scheme, on the contrary, can be designed to have a BER which is constant for all channel SNRs. The spectral efficiency of the fixed modulation is constant, while it, in general, will increase with increasing channel SNRs for the adaptive scheme. This in effect means that the average spectral efficiency of the adaptive scheme is improved, while at the same time the BER is better suited to the requirement of the application. Thus, the adaptive link becomes much more efficient for data transmission. The major disadvantage is that the transmitter needs to know the channel SNR such that the best suitable modulation is chosen and the receiver must be informed on the used modulation in order to decode the information. This leads to an increased overhead in the system as compared with a fixed modulation system. In this paper, we introduce adaptive modulation systems by presenting some of the simpler adaptive quadrature amplitude modulation schemes and their performance for both perfectly known and predicted channels.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 12 )