By Topic

An Integrated Experimental and Computational System for the Thermal Characterization of Complex Three-Dimensional Submicron Electronic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raad, P.E. ; Southern Methodist Univ., Dallas ; Komarov, P.L. ; Burzo, M.G.

This work presents the creation of a coupled analysis engine and experimental system capable of fully characterizing the thermal behavior of complex, 3D, active, submicron, electronic devices. First, the surface temperature field of an activated device is non-invasively measured with submicron spatial resolution. Next, the thermal conductivity of each thin-film layer composing the device is measured and a numerical model is built using these values. The measured temperature distribution map is then used as input for an ultra-fast inverse computational solution to fully characterize the thermal behavior of the complex 3D device. By bringing together measurement and computation, it becomes possible for the first time to non-invasively extract the 3D thermal behavior of nanoscale embedded features that cannot otherwise be accessed. The power of the method was demonstrated by verifying that it can extract details of interest of a representative MOSFET device.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 4 )