Cart (Loading....) | Create Account
Close category search window
 

Hybridization of CMOS With CNT-Based Nano-Electromechanical Switch for Low Leakage and Robust Circuit Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chakraborty, R.S. ; Case Western Reserve Univ., Cleveland ; Narasimhan, S. ; Bhunia, S.

Exponential increase in leakage power has emerged as a major barrier to technology scaling. Existing circuit techniques for leakage reduction either suffer from reduced effectiveness at nanometer technologies or affect performance and gate-oxide reliability. In this paper, we propose application of a specific carbon nanotube (CNT)-based nano-electromechanical switch as a leakage-control structure in logic and memory circuits. In case of memory circuits, we demonstrate that the proposed hybridization can be employed to reduce both cell leakage and bitline leakage, thereby improving the read noise margin as well. Due to the unique electromechanical properties of CNTs, these switches have high current-carrying capacity, extremely low leakage current, and low operating voltages. Moreover, they can act as nonvolatile memory elements, which can be exploited for data retention of important registers and latches during power down. Simulation results for a set of benchmark circuits show that we can obtain several orders of magnitude improvement in leakage saving in logic circuits at iso-performance compared to existing multi-threshold CMOS technique. In memory circuits, simulations show reduction in standby leakage and reduction in bitline leakage compared with the best existing techniques.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.